

1	Circle the value of the $\frac{9}{1000}$	digit 9 in the number 7 $\frac{9}{100}$.962 <u>9</u> 10	9	[1 mark]
2	Solve $3x = 6$ Circle your answer. x = 0.5	x = 2	x = 3	<i>x</i> = 18	[1 mark]

Circle the correct statement.

[1 mark]

$$0.3 = \frac{1}{4}$$

$$0.3 = \frac{1}{4}$$
 $0.3 \leqslant \frac{1}{4}$ $0.3 < \frac{1}{4}$

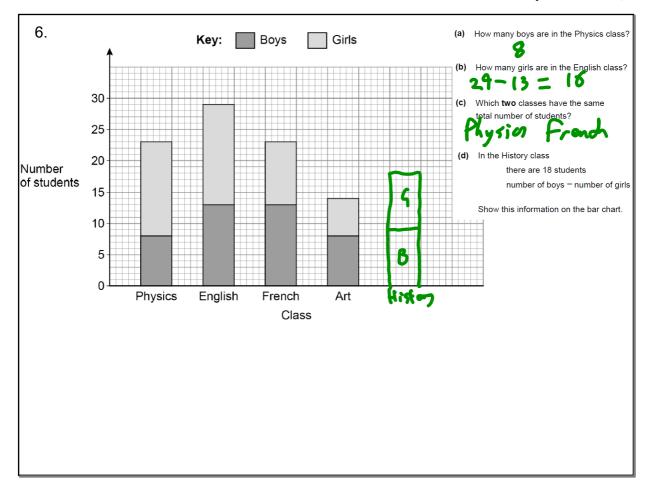
$$0.3 < \frac{1}{4}$$

Circle the number that is closest in value to $\sqrt{50}$ 4

[1 mark]

[3 marks]

5



8

25

5

Work out 76 × 24

7	(a)	Work out 1.86 ÷ 6	[1 mark]
		0.32	
		Answer	
7	(b)	Work out 0.4 × 0.2	[1 mark]

8 Here are four number cards.

0.27

6.3

0.4

8 (a) Choose two of the cards to make the answer to this calculation a whole number. Include the answer to the calculation.

[2 marks]

(b) Choose **two** of the cards to make the answer to this calculation as large as possible.

Include the answer to the calculation.

[2 marks]

9

Rulers

85p each

Pens

£3.50 each

Jenny buys 5 rulers and 2 pens.

She works out how much she should pay.

Rules: 5485 = # 25

Pens 243.50=£7

4.25
6.10

Total=41.25

$$5 \times 85p = £4.25$$

$$2 \times £3.50 = £6.10$$

$$Total = £10.35$$

Jenny's total is wrong.

5 he matt-pled 350+2

What mistake has she made?

Include the correct total in your answer.

[2 marks]

10 Here are three calculations, A, B and C.

Α

В

C

 100×20000

2000000

1 million ÷ 2

 4×100000 400000

Put the calculations in order.

Start with the calculation that has the smallest answer.

You **must** show the answer to each calculation.

Shallest

0 199est

[3 marks]

400000, 500000, 2000000

11 In a raffle, 200 tickets are sold.

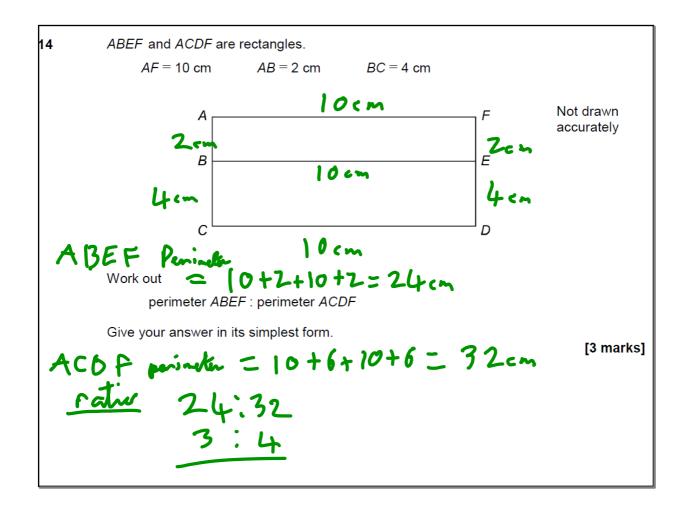
The tickets are either red or blue.

The winning ticket is picked at random.

11 (a) What is the probability that the winning ticket is green?

[1 mark]

11 (b)

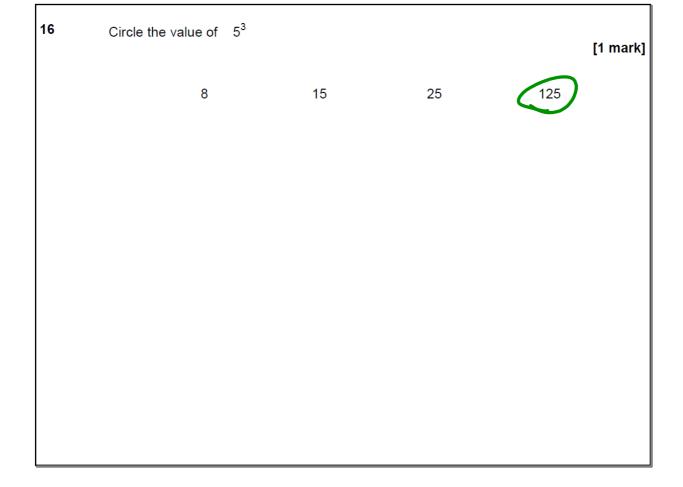

79 children and 90 women buy one ticket each.

Men buy the rest of the tickets.

Work out the probability that a man buys the winning ticket.

[2 marks]

12	A college has
	a total of 105 teachers
	19 more female teachers than male teachers.
	What proportion of the teachers are female?
	105 - 19 = 86
	86 43 male 43+19= 624 ml
	2 -
	Female proportion is 62
	105
	Answer
3	By rounding each number to the nearest 10, estimate the value of $262 \div 19.8$
	260 ÷ 20 = 13
	200 - 20 _ 15
	Answer


ADB and CD are straight lines.

Find His one

Not drawn accurately

angle $ADC = 5 \times \text{angle } CDB$ Work out the size of angle ADC.

[3 marks]

18	Mo played 30	games of chess.

He won 18 of these games.

Lost 12 games

18 (a) What fraction of the games did he win?

Give your answer in its simplest form.

[2 marks]

Answer 5

18 (b) He played 20 more games.

He had then won 64% of all of his games.

How many of the 20 games did he win?

[3 marks]

(a)	In a field	
	number of sheep : number of $cows = 10:3$	
	Zak says, "There are 10 sheep in the field."	
	Give a reason why Zak could be wrong. Thee could be 20 sheep and 6 cows	[1 ma
	Thee could be 20, mg	

19 (b)	In a different field number of goats : number of pigs = 13 : 4
	Priya says, "There are more than three times as many goats as pigs." Is she correct?
	Tick one box. Yes No Cannot tell Show working to support your answer.
	Show working to support your answer. [1 mark]

20 An ordinary fair dice is rolled.

$$P(A) = \frac{5}{6}$$

Which could be a correct statement about event A?

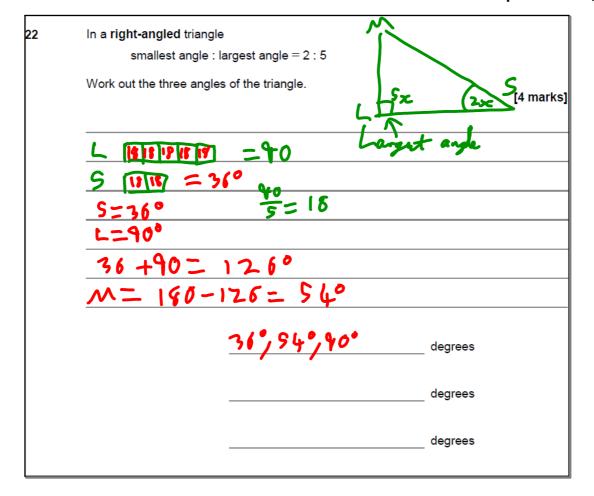
Tick one box.

[1 mark]

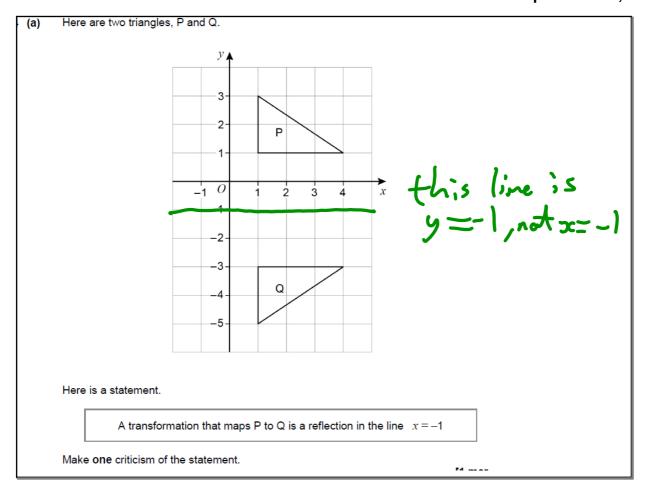
The number rolled is even

The number rolled is greater than 1

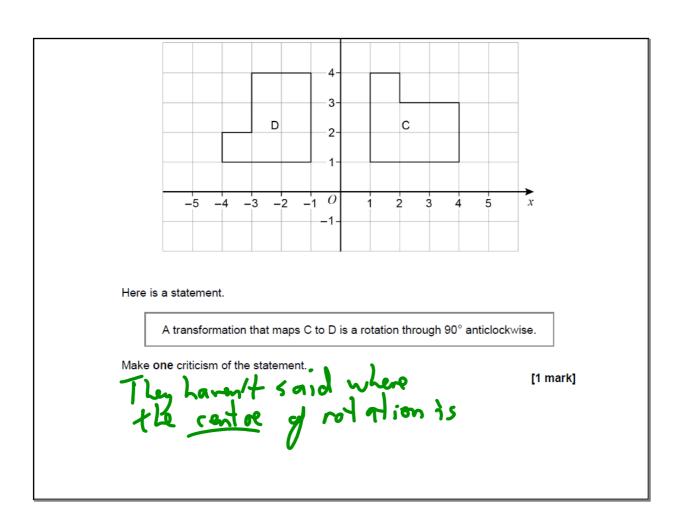
The number rolled is less than 5



The number rolled is prime

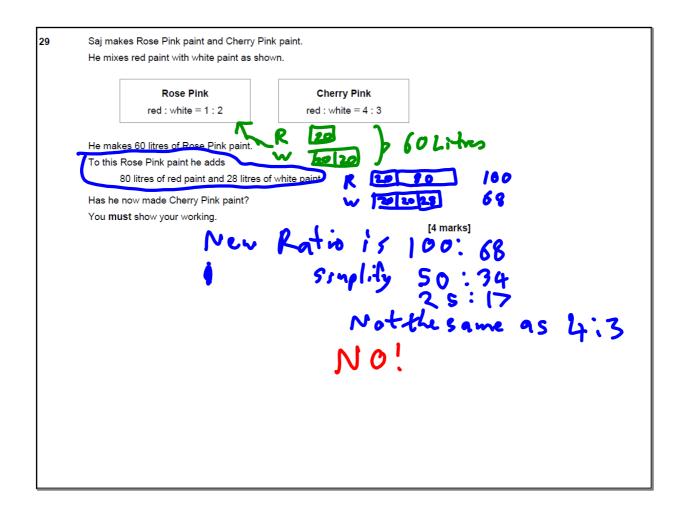

Solve
$$8x + 7 = 2x + 10$$

-2x -2x


[3 marks]

$$6x+7=10$$
 $6x+7=10$
 $3=\frac{1}{6}=2$
 0.5

23	Which one of the following is discrete data? Circle your answer. [1 ma			
	length of arm	height of door	number of pets	mass of sugar



25 (a)	A geometric progression starts 4 16 Work out the next term. 4 16 X4 X4 [1 mark]	
	Answer	
25 (b)	A Fibonacci-type sequence starts 3 -8 - \$ The sequence is continued by adding the previous two terms.	
	Work out the next two terms. [2 marks]	 -
	-8+-5 = -13 Answer - 5 and -13	

Given that $a \times 60 = b$ work out the value of $\frac{4b}{a}$	[2 marks]
240= ub	
Answer 240 27 Write $27 \times (3^2)^7$ as a single power of 3	[3 marks]
3 ³ ×3 ¹⁴ = 3 ¹⁷	
Answer	

30 (a)	Work out $\frac{2 \times 10^{14}}{8 \times 10^9}$ 2 3 5 0 5 Give your answer in standard form.
	not standard form
	= 5×10 ⁴
	Answer \$ \(\frac{\frac}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\fir}{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac}{\frac{\frac}}}}{\frac{\frac{\frac{\frac}{\frac{\frac

Work out the values of c and d .	[2 marks]
6200 + 0.7	[2 marks]
6200 + 0.7 6.2×10 ³ 7×10 ^{€1}	
c= 3 d= -1	
c u	

31	$V = \frac{k}{H}$ where k is a constant.	
	Which two statements are correct?	
	Tick two boxes.	[1 mark]
	V is directly proportional to H	
	V is inversely proportional to H	
	V is directly proportional to $\frac{1}{H}$	
	V is inversely proportional to $\frac{1}{H}$	

8300 1F N19.pdf